Research Journal of Pharmaceutical, Biological and Chemical Sciences

Aggregation of Thrombocytes in People of Second Adulthood with Arterial Hypertension of the $2^{\text {Rd }}$ Degree.

Medvedev I.N.*.

Russian State Social University, st. V. Pika, 4, Moscow, Russia, 129226

ABSTRACT

The goal is to evaluate the activity of platelet aggregation and individual mechanisms of their inhibition in patients with arterial hypertension of the $2{ }^{\text {rd }}$ degree. Under observation there were 45 patients with arterial hypertension of the $2^{\text {rd }}$ degree, risk 3 , including 23 men and 22 women of the second mature age. The control group was composed of 25 clinically healthy people of the same age. There were applied biochemical, hematological and statistical methods of investigation. The blood of patients was noted to have the increase of hromboxane B_{2} by 43.2% at lowering of 6 -keto-prostaglandin $F_{1 \alpha}$ by 10.8% and quantity depression of nitric oxide summary metabolites by 13.5%. The degree of aggregation and the index of platelets' aggregation with collagen surpassed in patients the control level by 15.0% and by 15.9%, with ristomicin they were higher the control values by 17.6% and by 22.6%, with ADP - by 14.1% and by 21.4%, respectively. The patients were found to have the decrease of platelets-discocytes till $62.1 \pm 0.29 \%$. The sum of platelets' active forms in their blood reached $37.9 \pm 0.12 \%$ (the control value $-17.9 \pm 0.09 \%$) at the content of small and large aggregates 11.2 ± 0.11 and 3.5 ± 0.10 (the control values -2.9 ± 0.06 and 0.2 ± 0.06 on 100 freely lying platelets). Existing in the examined patients surplus platelets' activity has in its basis the rise of adhesive and aggregative activity of platelets at weakening of their capability to disaggregation. Arterial hypertension and strengthening of lipids' peroxidation in plasma should be considered the most significant causal factors of the detected thrombocytopathy.
Keywords: arterial hypertension, aggregation, platelets, thrombophilia, hemostasis.

*Corresponding author

INTRODUCTION

In the modern world, the pathology of the heart and blood vessels is still very common despite the tremendous efforts of medical science and practice [1]. In their structure a huge share is occupied by arterial hypertension (AH), which is very dangerous for its vascular complications [2]. This is due to the extremely detrimental effect of $A H$ on the heart and blood vessels, which leads to a marked increase in the risk of thrombotic events as the blood pressure level increases [3,4]. The likelihood of a vascular accident increases dramatically in the case of prolonged preservation of high blood pressure in patients due to the lack of adequate reduction [5,6]. The development of this category of patients with vascular complications is largely due to the increasing aggregation readiness of platelets [7-10] and the increase in the number of their circulating aggregates $[11,12]$. The estimation of the level of platelets' activity and separate mechanisms of its inhibition in patients with AH of the $2^{\text {rd }}$ degree who earlier didn't take regularly hypotensive drugs [13] is very interesting from the scientific and practical points of view. That's why we put the following aim in our research: to evaluate the activity of platelet aggregation and individual mechanisms of their inhibition in patients with arterial hypertension of the $2^{\text {rd }}$ degree.

MATERIALS AND METHODS

The conduction of the research was approved by the local Ethics Committee of the Russian State Social University in May, $25^{\text {th }}$, 2016 (Record №5). All the examined persons gave written informed consent on participation in the conducted research.

There were observed 45 patients with AH of the $2^{\text {rd }}$ degree, risk 3 [14], including 23 men and 22 women of the second mature age (mean age 46.2 ± 2.9 years). The criteria for the enrollment of the patients into the research were as follows: AH existence in them for not less than 7 years, and it corresponded to the $2^{\text {rd }}$ degree for not less than last 3 years; normal lipid profile and body mass; and also absence of systematic hypotensive treatment because of their personal beliefs.

The criterion of elimination out of the research was the existence of atherosclerosis' clinical manifestations including ischemic heart disease (IHD), oncological and endocrine diseases. The control group was composed of 25 clinically healthy people of the same age. The group of patients and the group of healthy people had normal quantity of platelets in blood. Blood drawing in both groups was conducted after 14-hours' starvation. The activity of plasma lipids' peroxidation (LPO) was found according to the content of thiobarbituric acid (TBA)-active products by a set of the firm "Agat-Med", acylhydroperoxides (AHP). Determination of antioxidant potential of liquid part of blood was conducted in all the patients [15].

The content of thromboxane A_{2} metabolite - thromboxane B_{2} and prostacyclin metabolite - 6-ketoprostaglandin $F_{1 \alpha}$ was determined in blood plasma of the examined persons by the way of enzymoimmunoassay with the help of sets of the firm "Enzo Life science" (USA). Summary content of nitric oxide metabolites in blood of the observed persons was determined according to the method by Metelskaya V.A. and co-authors (2005) [9]. Platelets' aggregation was estimated on two-channel laser analyzer of platelets' aggregation ALAT2-"BIOLA" (model LA230-2, Russia) with application of ADP ($0.5 \times 10^{-4} \mathrm{M}$), collagen (dilution 1:2 of the basic suspension), ristomicin ($0.8 \mathrm{mg} / \mathrm{ml}$) ("Renam", Russia) as inductors. Platelets' intravascular activity (PIA) was determined by phase contrast [10]. Statistical processing of received results was conducted with the usage of Student's t-criterion.

RESULTS AND DISCUSSION

The level of arterial pressure (AP) in taken under observation patients (systolic $-166.3 \pm 2.3 \mathrm{~mm}$ of merc. col., diastolic $-106.0 \pm 1.1 \mathrm{~mm}$ merc. col.) corresponded to AH of the $2^{\text {rd }}$ degree.

Blood of persons composing the group of observation, was noted to have imbalance of arachidonic acid metabolites - thromboxane B_{2} turned out to be increased by 43.2%, whereas the level of its functional antagonist's derivative - 6-keto-prostaglandin $\mathrm{F}_{1 \alpha}$ was lowered by 10.8% (Table). It was accompanied in observed patients quantity lowering of nitric oxide summary metabolites in their blood plasma by 13.5%.

Table: Hematologic characteristics of patients with arterial hypertension $\mathbf{2}$ degrees

Registered parameters		$\begin{gathered} \text { Patients, } \\ \mathrm{n}=45, \mathrm{M} \pm \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Control, } \\ \mathrm{n}=25, \mathrm{M} \pm \mathrm{m} \end{gathered}$
AHP, $\mathrm{D}_{233} / 1 \mathrm{ml}$		3.20 ± 0.014	$\begin{gathered} 1.62 \pm 0.02 \\ p<0.01 \end{gathered}$
TBA-compounds, mcmol / I		5.08 ± 0.010	$\begin{gathered} 3.38 \pm 0.06 \\ p<0.01 \end{gathered}$
plasma antioxidant activity, \%		26.4 ± 0.12	$\begin{gathered} 36.8 \pm 0.03 \\ \mathrm{p}<0.01 \end{gathered}$
thromboxane $\mathrm{B}_{2}, \mathrm{pg} / \mathrm{ml}$		224.1 ± 0.45	$\begin{gathered} 156.5 \pm 0.66 \\ \mathrm{p}<0.01 \end{gathered}$
6-keto-prostaglandin $\mathrm{F}_{1 \alpha}, \mathrm{pg} / \mathrm{ml}$		75.8 ± 0.38	$\begin{gathered} 82.4 \pm 0.49 \\ p<0.01 \\ \hline \end{gathered}$
Total metabolites nitrogen oxide, $\mathrm{mcmol} / \mathrm{l}$		29.6 ± 0.36	$\begin{gathered} 33.6 \pm 0.35 \\ p<0.01 \end{gathered}$
platelet aggregation with collagen, s	the degree of aggregation, relative units	9.2 ± 0.20	$\begin{gathered} 8.0 \pm 0.32 \\ p<0.01 \end{gathered}$
	rate of aggregation, relative units	8.0 ± 0.18	$\begin{gathered} 6.9 \pm 0.27 \\ p<0.01 \end{gathered}$
platelet aggregation with ADP, s	the degree of aggregation, relative units	8.1 ± 0.24	$\begin{gathered} 7.1 \pm 0.24 \\ p<0.01 \\ \hline \end{gathered}$
	rate of aggregation, relative units	6.8 ± 0.22	$\begin{gathered} 5.6 \pm 0.16 \\ p<0.01 \end{gathered}$
platelet aggregation with ristomicin, s	the degree of aggregation, relative units	8.7 ± 0.21	$\begin{gathered} 7.4 \pm 0.15 \\ p<0.01 \end{gathered}$
	rate of aggregation, relative units	6.5 ± 0.16	$\begin{gathered} 5.3 \pm 0.22 \\ p<0.01 \end{gathered}$
Number of platelets in aggregates, \%		11.8 ± 0.12	$\begin{gathered} 6.7 \pm 0.08 \\ p<0.01 \end{gathered}$
Number of little aggregates (in 100 free platelets)		11.2 ± 0.11	$\begin{gathered} 2.9 \pm 0.06 \\ p<0.01 \end{gathered}$
Number of medium and large aggregates (in 100 free platelets)		3.5 ± 0.10	$\begin{gathered} 0.2 \pm 0.06 \\ p<0.01 \end{gathered}$
Platelets-discocytes, \%		62.1 ± 0.29	$\begin{gathered} 82.1 \pm 0.11 \\ p<0.01 \\ \hline \end{gathered}$
Sum of platelets' active forms, \%		37.9 ± 0.12	$\begin{gathered} 17.9 \pm 0.09 \\ p<0.01 \end{gathered}$

Symbols: p-reliability of distinctions of indicators between a group of patients and control. In the subsequent table of designation it is similar.

Platelets' aggregation in persons with AH of the $2^{\text {rd }}$ degree turned out to be strengthened (Table). Their platelets reacted most actively on collagen. At the same time, the degree of aggregation with this inductor surpassed the control value by 15.0%, and the index of aggregation - by 15.9%. Platelets' aggregation of the patients on ristomicin was a bit weaker. At the same time, the degree of patients' aggregation with it was higher than control value by 17.6%, and the index of aggregation surpassed it in healthy persons by 22.6%. Platelets' aggregation in response to ADP addition was still less active in the examined patients. At the same time, the values of aggregation degree and aggregation index surpassed control values by 14.1% and by 21.4%, respectively.

In blood the patients with AH of the $2^{\text {rd }}$ degree were found to have lowering of platelets discocytes till $62.1 \pm 0.29 \%$ (the control value $-82.1 \pm 0.10 \%$). The sum of platelets' active forms in patients was equal to $37.9 \pm 0.12 \%$ (the control value $-17.9 \pm 0.09 \%$). The content of little and large aggregates in blood of persons from the observation group was equal to 11.2 ± 0.11 and 3.5 ± 0.10, against the control values -2.9 ± 0.06 and
0.2 ± 0.06 in 100 freely lying platelets, respectively. At the same time, the quantity of platelets in patients' aggregates prevailed over the level of comparison group in 1.76 times what pointed at evident PIA strengthening in them.

In the blood of all observed patients a decrease in the antioxidant protection of plasma and an increase in the concentration of primary and secondary products of LPO were found to create conditions for damaging the membranes of platelets and endotheliocytes [17,18].

Previously found out that AH actively disturbs the functions of vascular wall and regular blood elements thus promoting the formation of some thrombotic phenomena [19, 20]. At the same time, the activity of platelet hemostasis in these patients is still studied rather poorly and needs additional estimation. At the same time, the disturbance degree of basic mechanisms' deviation from the norm of platelets' activity in thrombocytopathy formation as the basis of thrombophilia [21] is far from being fully studied in the given category of patients [22].

Increased AP already in itself influences evidently and negatively the vascular wall causing damage of endothelium and exposing subendothelial fibers which can contact activate platelets [23]. The synthesis of biologically active substances which can limit platelets' adhesion and aggregation lowers in such conditions in the vascular wall. The synthesis of pro-aggregants strengthens at that in platelets [24]. So, noted in the observed patients intensification of thromboxane formation and production weakening of its functional antagonist - prostacyclin - form imbalance of arachidonic acid metabolites. It, evidently, has activation of platelet thromboxane-synthetase and depression of vascular prostacyclin-synthetase activity in its basis. Given disturbances are aggravated by developing increase of endothelin-1 production in vascular wall and weakening of NO production in it. Probably, it happens in the result of endothelial NO-synthase suppression by surplus LPO and hereditary predisposition to dislipidemia [25,26].

Forming on their membranes surplus plasmatic thromboplastin accelerates thrombin-formation leading to the growth of platelets' aggregates and acceleration of fibrin fibers' formation on them with the appearance of platelet-fibrin clots. They can embolize little vessels [24].

Platelets' surface of the observed patients could be stated to have significant density increase of glycoproteids la - Ila and VI participating in platelets' adhesion. It could be judged by AP intensification in response to collagen. Intensification of platelets' adhesion in the observed patients is also connected with surplus expression of receptors to von Willebrand's Factor on their surface. Given mechanism of strengthening of platelets' adhesive activity in patients was managed to register according to AP intensification with ristomicin which influences platelets similarly to subendothelial structures of vessels. So, von Willebrand's Factor is necessary for the coming of ristomicin AP as it fixes the molecules to ristomicin (as to collagen) by one side, and by the other side - to platelets through their receptor lb. That's why, the given category of patients can be stated to have strengthening of "adhesion axis" formation: ristomicin (collagen) - WF - GPIb. At the same time, the very significant quantity increase of binding places of von Willebrand's Factor on platelets' membranes is the important mechanism of coming of their surplus adhesive ability [27].

Of patients with AH of the $2^{\text {rd }}$ degree on platelets' surface. It's accompanied by phospholipase C activation, synthesis stimulation of diacylglycerol and protein kinase C with consequent evident proteins' phospholiration of the contractile system [28]. In these conditions inositol-triphosphate actively stimulates Ca^{2+} inflow out of platelets' depo promoting very fast decrease of actomyosin [29]. ADP referring to weak inductors of platelets' aggregation, in conditions of formation deficiency of nitric oxide and prostacyclin in vessels also actively interacts with receptors of their membranes causing mighty expression of fibrinogenic receptors on them with activation of phospholipase A_{2} which provides precipitation of arachidonic acid out of membrane phospholipids [30].

Large quantity of platelets' active forms in patients' blood has in its basis, from one side, deficiency of nitric oxide and prostacyclin formation in vascular walls, and, from the other side, activity rise of platelets themselves. Besides, high PIA speaks about excessive availability of vascular wall's collagen for platelets because of its endothelium's damage against the background of constant presence of surplus diluted aggregation inductors and active LPO in patients' blood leading to chemical damage of endothelium [27]. Constantly high AP leads to mechanical microtraumas of vascular walls what also inevitably leads to PIA rise in
the examined patients. Developing content increase of platelets' active forms inevitably rises the quantity of moving in blood aggregates of different sizes which are also able to damage endotheliocytes. It additionally exposes sub-endothelial structures. Given disturbances close "vicious circle" causing significant weakening of vascular hemostasis' activity and risk increase of thrombosis' coming [31]. Circulating aggregates also generally block vasa vasorum what leads to weakening of vessels' functions against the background of existing metabolic and rheological blood disturbances of persons with AH at MS.

CONCLUSION

Surplus platelets' activity which exists in the examined patients with AH of the $2^{\text {rd }}$ degree and can be found in vitro and in vivo has in its basis some rise of adhesive and aggregative platelets' activity, and also weakening of their ability to disaggregation mostly on behalf of imbalance of pro- and antiaggregative compounds in their blood. Hypodynamia and developing against its background persistently high level arterial hypertension and strengthening of LPO in it should be considered the most significant causes of the given imbalance. Available in blood of patients with AH of the $2^{\text {rd }}$ degree conditions for support of platelets' high activity develop serious danger of thrombosis any localization development in them.

REFERENCES

[1] Kotseva K, Wood D, De Backer G. (2009) Euroaspre Study Group. Cardiovascular prevention quidelines in daily practice: a comparison of Euroaspre I, II, and III surveys in eiqht European countries. Lancet. 373 : 929-940.
[2] Kotova OV, Zavalishina SYu, Makurina ON, Kiperman YaV, Savchenko AP, Skoblikova TV, Skripleva EV, Zacepin VI, Skriplev AV, Andreeva VYu. (2017) Impact estimation of long regular exercise on hemostasis and blood rheological features of patients with incipient hypertension. Bali Medical Journal. 6(3): 514-520. doi:10.15562/bmj.v6i3.552
[3] Cuspidi C, Sala C, Zanchetti A. (2008) Metabolic syndrome and target organ damage: role of bbood pressure. Expert Rev Cardiovasc Ther. 6(5) : 731-743.
[4] Vatnikov YuA, Zavalishina SYu, Pliushchikov VG, Kuznetsov VI, Seleznev SB, Kubatbekov TS, Rystsova EO, Parshina VI. (2017) Early-changes diagnostics of erythrocytes microrheological features in the model of dyslipidemia development in rats at the late stages of ontogenesis. Bali Medical Journal. 6(1) : 216-222.doi: 10.15562/bmj.v6i1. 483
[5] Zavalishina SYu, Vatnikov YuA, Kulikov EV, Yagnikov SA, Karamyan AS, Sturov NV, Byakhova VM, Kochneva MV, Petryaeva AV. (2017) Diagnostics of erythrocytes' microrheological features and early abnormalities of rats in the model of experimental hypertension development. Bali Medical Journal. 6(3): 470-475. doi:10.15562/bmj.v6i3.589
[6] Vatnikov YuA, Zavalishina SYu, Kulikov EV, Vilkovysky IF, Nikishov AA, Drukovsky SG, Krotova EA, Khomenets NG, Bolshakova MV. (2017) Correctional abilities of regular muscle activity in relation to erythrocytes' microrheological features of rats with experimentally developed hypertension. Bali Medical Journal. 6(3): 449-456. doi:10.15562/bmj.v6i3.586
[7] Gurevich VS. (2013) Correction of dyslipidemia with concomitant arterial hypertension from the perspective of an updated paradigm of cardiovascular risk. Systemic hypertension. 3 : 54-59.
[8] Bikbulatova AA, Karplyuk AA, Tarasenko OV. (2017) Model of Activities of the Resource Training Center of the Russian State Social University in Terms of Professional Orientation and Employment of Persons with Disabilities. Psikhologicheskaya nauka i obrazovanie. 22(1): 26-33.
[9] Bikbulatova AA, Pochinok NB. (2017) Professional Skills Competitions for People with Disabilities as a Mechanism for Career Guidance and Promotion of Employment in People with Special Needs. Psikhologicheskaya nauka i obrazovanie. 22(1) : 81-87.
[10] Bikbulatova AA. (2014) Determining the Thickness of Materials in Therapeutic and Preventive Heatsaving Garments // Proceedings of higher education institutes. Textile industry technology. 1 (349) : 119-123.
[11] Zavalishina SYu, Nagibina EV.(2012) Dynamics of microrheology characteristics of erythrocyte in children 7-8 years with scoliosis with therapeutic physical training and massage // Technologies of Living Systems. 9(4) : 29-34.
[12] Carrizzo A, Puca A, Damato A. (2013) Resveratrol improves vascular function in patients with hypertension and dyslipidemia by modulating NO metabolism. Hypertension. 62 : 359-366.
[13] Skoryatina IA, Zavalishina SYu. (2017) Ability to aggregation of basic regular blood elements of patients with hypertension anddyslipidemia receiving non-medication andsimvastatin. Bali Medical Journal. 6(3): 514-520.doi:10.15562/bmj.v6i3.552
[14] Diagnosis and treatment of hypertension. In the book: National Clinical Recommendations. 3rd edition. Moscow: Silicea-Polygraph, 2010: 463-500.
[15] Zavalishina SYu. (2013) State of the system in neonatal calves in hemostasis with iron deficiency. Russian Agricultural Sciences. 3 : 43-46.
[16] Metelskaya VA, Gumanova NG. (2005) Nitric oxide: a role in the regulation of biological functions, methods of determination in human blood. Laboratory medicine. 7 : 19-24.
[17] Erdine S, Arslan E. (2013) Monitoring treatment adherence in hypertension. Curr Hypertens Rep. 15: 269-272.
[18] Zavalishina SYu.(2012) Activity of a vascular hemostasis at calfs of a dairy food. Russian Agricultural Sciences. 4: 49-51.
[19] Zavalishina SYu. (2012) Hemostatic activity of a vascular wall at newborn calfs. Russian Agricultural Sciences. 1:37-39.
[20] Zavalishina SYu. (2012) Platelet activity in newborn calves with iron deficiency anemia. Veterinariya. 2 : 51-52.
[21] Sossdort M, König V, Gummert J. (2008) Correlations between platelet-derived microvesicles and thrombin generation in patients with coronary artery disease. Platelets. 19(6) : 476-477.
[22] Folsom AR.(2013) Classical and novel biomarkers for cardiovascular risk prediction in the United States. J Epidemiol. 2013; 23: 158-162.
[23] Zavalishina SYu. (2012) Dynamics of hemostasis system at newborn calves with iron deficiency by use ferroglucin and glicopin. Zootekhniya. 7: 14-16.
[24] Zavalishina SYu.(2012) Vascular hemostasis at calves in milk-and-vegetable phase of feeding. Zootekhniya. 2: 21.
[25] Zavalishina SYu. (2011) Functional condition of system of a hemostasis at newborn calves. Veterinariya. 6:42-45.
[26] Zavalishina SYu. (2011) Coagulation activity of plasma of blood at calves of a vegetative feeding. Veterinariya. 4 : 48-49.
[27] Sushkevich GN.(2010) Pathological systems of hemostasis and principles of their correction. Krasnodar: Soviet Kuban, 240.
[28] Hradec J, Zamorano J, Sutradhar S. (2013) Post hoc analysis of the Cluster Randomized Usual Care versus Caduet Investigation Assessing Long-term risk (CRUCIAL) trial. Curr. Med. Res. Opin. 29(6) : 589-596.
[29] Zavalishina SYu. (2011) Fibrinolysis blood activity at calves in the first year of life. Zootekhniya. 2 : 2931.
[30] Zavalishina SYu. (2010) Anticoagulative and fibrinolitic activity of plasma of blood at calves. Veterinariya. 11 : 41-43.
[31] Koniari I, Mavrilas D, Papadaki H. (2011) Structural and biochemical alterations in rabbit thoracic aorta are associated with the progression of atherosclerosis. Lipids in Health and Disease. 10: 125-134.

